

Balancer Core
Security Assessment
March 5, 2020

Prepared For:
Mike McDonald | Balancer Labs
mike@balancer.finance

Fernando Martinelli | Balancer Labs
fernando@balancer.finance

Prepared By:
Josselin Feist | Trail of Bits
josselin.feist@trailofbits.com

Gustavo Grieco | Trail of Bits
gustavo.grieco@trailofbits.com

Changelog:
February 21, 2020: Initial report delivered
March 5, 2020: Reviewed and updated content

mailto:josselin.feist@trailofbits.com
mailto:gustavo.grieco@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals

Coverage

Automated Testing and Verification
Automated Testing with Echidna

General Properties
Unit–test-based Properties

Code Verification with Manticore

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Single-asset liquidity functions allow stealing of assets
2. Lack of events in setBLabs is error-prone
3. Parameters’ order of single-asset functions is confusing
4. Assets will be lost in case of token migration
5. Users can silently burn tokens with transfers to 0x0
6. Privileged addresses can be transferred without confirmation even to invalid values
7. Users can join and exit pools even where there are no tokens
8. Single-asset exit functions allow withdrawing of a negligible amount of assets for
free
9. Assets with low decimals or low liquidity lead to withdraw a negligible amount of
assets for free
10. Rounding issues in joinPool/exitPool allow for a negligible amount of free pool
tokens
11. Attacker with large funds can steal the pool's assets
12. The normalized sum of the weight is not always equal to 1
13. Pools with a large total supply cause SWAP functions to always revert
14. Token balance limits are declared but not enforced
15. The swap-in and swap-out ratios are not correctly enforced

A. Vulnerability Classifications

B. Fix Log
Detailed Fix Log

© 2020 Trail of Bits Balancer Core Assessment | 1

Executive Summary
From January 13 through January 24, 2020, Balancer Labs engaged Trail of Bits to review
the security of Balance Core. Trail of Bits conducted this assessment over the course of
four person-weeks with two engineers working from 942a51e2 from the balance-core
repository.

We focused on identifying important system properties to test using fuzzing (Echidna) and
to verify with symbolic execution (Manticore). Specifically, we spent most of our time
reviewing and testing arithmetic properties within the source code.

In total, Trail of Bits identified fifteen issues ranging from informational- to high-severity.
One large category of findings allowed an attacker to obtain free tokens from pools. These
issues were caused either by missing input validation during the pool creation or rounding
issues during computation of the amount of tokens required to join, exit, or swap in pools.
The issues of lowest severity were caused by lack of documentation for the use of tokens
and their limitations when binding into a pool.

Upon completion of the audit, Balancer Labs requested additional days for a re-test. The
results are summarized in Appendix B . The issues found during the engagement were fixed
or reasonably mitigated without increasing the complexity of the code.

Overall, the code follows a high-quality software development standard and best practices.
It has suitable architecture and is properly documented. The interactions between
components are well-defined. The functions are small, with a clear purpose.

However, due to time constraints, only manual verification of essential properties related
to token swapping was performed. Trail of Bits recommends performing further testing
with fuzzers and symbolic executors to test extended safety and correctness properties of
that important feature.

© 2020 Trail of Bits Balancer Core Assessment | 2

https://github.com/balancer-labs/balancer-core/commit/942a51e202cc5bf9158bad77162bc72aa0a8afaf
https://github.com/crytic/echidna
https://github.com/trailofbits/manticore

Project Dashboard
Application Summary

Name Balancer Core

Version 942a51e202cc5bf9158bad77162bc72aa0a8afaf

Type Smart Contracts

Platforms Solidity

Engagement Summary

Dates January 13 to January 24, 2020

Method Whitebox

Consultants Engaged 2

Level of Effort 4 person-weeks

Vulnerability Summary

Total High-Severity Issues 2 ◼◼

Total Medium-Severity Issues 3 ◼◼◼

Total Low-Severity Issues 4 ◼◼◼◼

Total Informational-Severity Issues 4 ◼◼◼◼

Total Undetermined-Severity Issues 2 ◼◼

Total 15

Category Breakdown

Data Validation 7 ◼◼◼◼◼◼◼

Access Controls 1 ◼

Auditing and Logging 1 ◼

Undefined Behavior 5 ◼◼◼◼◼

Patching 1 ◼

Total 15

© 2020 Trail of Bits Balancer Core Assessment | 3

https://github.com/balancer-labs/balancer-core/commit/942a51e202cc5bf9158bad77162bc72aa0a8afaf

Engagement Goals
The engagement was scoped to provide a security assessment of Balance Core protocol
smart contracts in the balancer-core repository.

Specifically, we sought to answer the following questions:

● Are appropriate access controls set for the user/controller roles?
● Does arithmetic regarding pool operations hold?
● Is there any arithmetic overflow or underflow affecting the code?
● Can participants manipulate or block pool operations?
● Is it possible to manipulate the pools by front-running transactions?
● Is it possible for participants to steal or lose tokens?
● Can participants perform denial-of-service or phishing attacks against any of the

pools?

© 2020 Trail of Bits Balancer Core Assessment | 4

Coverage
The engagement was focused on the following components:

● BPool and its libraries: Pools contains the main business logic within the Balancer
protocol. They allow users to bind any proper ERC20 token. We reviewed the
contract's interactions with these external, untrusted token contracts, to ensure
proper behavior. Once a pool is finalized or made public, we review the use of all its
operations to join, exit or swap tokens.

● BFactory: Pools are created in a special factory contract. We reviewed the access
control of this contract as well as the interaction with the pools once they are
deployed.

● BToken: Pools mints or burns their own share tokens every time a user joins or
exits the pool with tokens. This contract implements a standard ERC20 token. We
verified that all the expected properties are correctly implemented.

● Whitepaper: the Balancer components are detailed in its whitepaper . We reviewed
the document to make sure it is consistent and it does not leave any important
detail unspecified.

● Access controls. Many parts of the system expose privileged functionality, such as
setting protocol parameters or managing pools. We reviewed these functions to
ensure they can only be triggered by the intended actors and that they do not
contain unnecessary privileges that may be abused.

● Arithmetic. We reviewed calculations for logical consistency, as well as rounding
issues and scenarios where reverts due to overflow may negatively impact use of
the protocol.

It is worth noting that due to time constraints, some properties related to token swapping
were not covered. This includes the proper usage of swapExactAmountIn and
swapExactAmountOut , as well as the interaction with the other functions.

Off-chain code components were outside the scope of this assessment.

© 2020 Trail of Bits Balancer Core Assessment | 5

https://balancer.finance/whitepaper.html

Automated Testing and Verification
Trail of Bits used automated testing techniques to enhance coverage of certain areas of the
contracts, including:

● Slither , a Solidity static analysis framework. Slither can statically verify algebraic
relationships between Solidity variables. We used Slither to detect invalid or
inconsistent usage of the contracts' APIs across the entire codebase.

● Echidna , a smart contract fuzzer. Echidna can rapidly test security properties via
malicious, coverage-guided test case generation. We used Echidna to test the
expected system properties of the pool contract and its dependencies.

● Manticore , a symbolic execution framework. Manticore can exhaustively test
security properties via symbolic execution.

Automated testing techniques augment our manual security review but do not replace it.
Each technique has limitations: Slither may identify security properties that fail to hold
when Solidity is compiled to EVM bytecode; Echidna may not randomly generate an edge
case that violates a property; and Manticore may fail to complete its analysis. To mitigate
these risks, we generate 50,000 test cases per property with Echidna, run Manticore for a
minimum of one hour, and then manually review all results.

Automated Testing with Echidna
Echidna properties can be broadly divided in two categories: general properties of the
contracts that state what users can and cannot do, and specific properties based on unit
tests.

General Properties

Property Result

1 An attacker cannot steal assets from a public pool. FAILED (TOB-BL-001)

2 An attacker cannot force the pool balance to be out of sync. PASSED

3 An attacker cannot generate free pool tokens with
joinPool .

FAILED (TOB-BL-009)

4 Calling joinPool-exitPool does not lead to free pool
tokens (no fee).

FAILED (TOB-BL-010)

5 Calling joinPool-exitPool does not lead to free pool
tokens (with fee).

FAILED (TOB-BL-010)

© 2020 Trail of Bits Balancer Core Assessment | 6

https://github.com/trailofbits/slither
https://github.com/trailofbits/echidna
https://github.com/trailofbits/manticore
https://github.com/balancer-labs/balancer-core/issues/204

6 Calling exitswapExternAmountOut does not lead to free
assets.

FAILED (TOB-BL-008)

Unit-test-based Properties

Property Result

7 If the controller calls setController , then getController
should return the new controller.

PASSED

8 The controller cannot be changed to a null address (0x0). FAILED (TOB-BL-006)

9 The controller cannot be changed by other users. PASSED

10 The sum of normalized weight should be 1 if there are
tokens binded.

FAILED (TOB-BL-012)

11 The balance of all the tokens is less than or equal to
MAX_BALANCE.

FAILED (TOB-BL-014)

12 The balance of all the tokens is greater than or equal to
MIN_BALANCE.

FAILED (TOB-BL-014)

13 The weight of all the tokens is less than or equal to
MAX_WEIGHT.

PASSED

14 The weight of all the tokens is greater than or equal to
MIN_WEIGHT.

PASSED

15 The swap fee is less than or equal to MAX_FEE. PASSED

16 The swap fee is greater than or equal to MIN_FEE. PASSED

17 A user can only swap in less than 50% of the current balance
of tokenIn for a given pool.

FAILED (TOB-BL-015)

18 A user can only swap out less than 33.33% of the current
balance of tokenOut for a given pool.

FAILED (TOB-BL-015)

19 If a token is bounded, the getSpotPrice should never
revert.

PASSED

20 If a token is bounded, the getSpotPriceSansFee should
never revert.

PASSED

21 Calling swapExactAmountIn with a small value of the same
token should never revert. PASSED

© 2020 Trail of Bits Balancer Core Assessment | 7

22
Calling swapExactAmountOut with a small value of the same
token should never revert. PASSED

23

If a user joins a pool and exits it with the same amount, the
balance should remain constant.

PASSED

24
If a user joins a pool and exits it with a larger amount,
exitPool should revert. PASSED

25
It is not possible to bind more than MAX_BOUND_TOKENS.

PASSED

26
It is not possible to bind the same token more than once.

PASSED

27
It is not possible to unbind the same token more than once.

PASSED

28 It is always possible to unbind a token. PASSED

29
All tokens are rebindable with valid parameters.

PASSED

30
It is not possible to rebind an unbinded token.

PASSED

31 Only the controller can bind. PASSED

32

If a user who is not the controller tries to bind, rebind, or
unbind, the operation will revert.

PASSED

33
Transferring tokens to the null address (0x0) causes a revert.

FAILED (TOB-BL-005)

34 The null address (0x0) owns no tokens. FAILED

35

Transferring a valid amount of tokens to a non-null address
reduces the current balance.

PASSED

36 Transferring an invalid amount of tokens to a non-null
address reverts or returns false.

PASSED

37 Self-transferring a valid amount of tokens keeps the current
balance constant.

PASSED

38 Approving overwrites the previous allowance value. PASSED

39 The totalSupply is a constant. PASSED

40 The balances are consistent with the totalSupply . PASSED

© 2020 Trail of Bits Balancer Core Assessment | 8

Verification with Manticore
We used Manticore to verify that rounding errors cannot be used to obtain free assets
while executing join and exit operations in a pool.

Property Result

41 An attacker cannot generate free pool tokens with
joinPool .

FAILED (TOB-BL-009)

42 Calling joinPool-exitPool does not lead to free pool
tokens (no fee).

FAILED (TOB-BL-010)

43 Calling joinPool-exitPool does not lead to free pool
tokens (with fee).

FAILED (TOB-BL-010)

Manual Verification
Trail of Bits manually reviewed the code to verify the the following properties:

Property Result

44 The spot price after trading when calling
swapExactAmountIn cannot decrease.

PASSED

45 The spot price after trading when calling
swapExactAmountOut cannot decrease.

PASSED

© 2020 Trail of Bits Balancer Core Assessment | 9

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term
❑ Prevent the single asset deposit/withdraw functions (joinswapExternAmountIn,
joinswapExternAmountOut, exitswapPoolAmountIn, and exitswapPoolAmountOut) from
being called if the pool is not finalized. These functions allow anyone to steal the assets
if the pool is not finalized (TOB-BL-001).

❑ Add an event to BFactory.setBLabs . The lack of events makes it more difficult to track
potential errors or a compromise (TOB-BL-002).

❑ Follow the same order of parameters for similar functions, such as the join and
exit swap functions. API inconsistency is error-prone and might confuse users
(TOB-BL-003).

❑ Document the limitations of using pools in case token migrations . This will help
users to understand what to expect in these situations. (TOB-BL-004)

❑ Add a require condition in transfer and transferFrom that explicitly forbids
burning tokens by transferring them to 0x0 . This will prevent accidental burning of
tokens (TOB-BL-005).

❑ Split setController into setController and acceptController, which will reject
any null address. Add a renounceController function that allows you to set the
controller to 0x0 if needed. This will prevent accidental loss of controller functionality
(TOB-BL-006).

❑ Prevent finalization if there are fewer than two tokens. If a finalized pool has fewer
than two tokens, anyone can receive share tokens for free (TOB-BL-007).

❑ Revert in exitswapExternAmountOut if poolAmountIn is 0 . Otherwise, the arithmetic
rounding can lead to free assets (TOB-BL-008).

❑ Revert in joinPool if tokenAmountIn is zero and tokenAmountOut in exitPool.
Otherwise, the arithmetic rounding can lead to free pool tokens (TOB-BL-009).

© 2020 Trail of Bits Balancer Core Assessment | 10

❑ Consider preventing token with a decimal != 18 from being bound. Allowing tokens
with different decimals complicates the computation (TOB-BL-009).

❑ Revert in joinswapPoolAmountOut if calcSingleInGivenPoolOut is zero. Otherwise, an
attacker with large funds can steal the pool’s assets (TOB-BL-011).

❑ Document that the normalized sum of the weight is not always equal to 1. Due to
arithmetic rounding, this property is not enforced (TOB-BL-012).

❑ Document corner cases in the swap functions. Due to the way integer overflows are
handled, a pool with a large amount of tokens can revert when using the swap functions.
(TOB-BL-013).

❑ Document how the maximum and minimum values for token balances are
handled . This will make sure users understand that these are not enforced on-chain
(TOB-BL-014).

❑ Simplify the implementation of the ratio checks in the swap-in and swap-out
operations using bdiv . This will reduce the rounding errors in the ratio checks as well as
the amount of gas used. (TOB-BL-015).

© 2020 Trail of Bits Balancer Core Assessment | 11

Long Term
❑ Create a state machine representation of the pool, describing each state and each
function that should be callable by the different actors. Such documentation will help
reviewers confirm the correct behavior of the codebase (TOB-BL-001).

❑ Monitor the contract’s events to detect potential compromise. Events must be used
and monitored to detect compromise (TOB-BL-002).

❑ Use Slither's printer capacity to review the contract's API. Slither can help detect API
inconsistency (TOB-BL-003).

❑ Study which solutions can be implemented in case of token migration, and
properly document what pool controllers and users should do . This will help users to
understand what to expect in these situations. (TOB-BL-004)

❑ Use Echidna and Manticore to check that:

● The BToken does not allow users to easily burn tokens by transferring them to
0x0 . This will prevent accidental burning of tokens (TOB-BL-005).

● The administrative addresses cannot be set to incorrect values. This will
prevent accidental loss of controller functionality (TOB-BL-006)

● joinPool and exitPool work as expected and they cannot be used to get free
assets. This will prevent attackers from taking advantage of rounding issues
(TOB-BL-007).

● The rounding effects are below a reasonable threshold. Multiple issues were
related to arithmetic rounding; those effects must be carefully reviewed
(TOB-BL-008 , TOB-BL-009 , TOB-BL-010 , TOB-BL-011).

● The normalized weights are correctly computed. This will prevent incorrect
computation of the required values when using the join, exit, and swap functions
(TOB-BL-012).

● The swap function does not revert when handling a large amount of tokens. It
will unexpectedly revert when calling swap functions (TOB-BL-013).

● Pool limits are correctly enforced . This will prevent pools with invalid or
unexpected internal states (TOB-BL-014 , TOB-BL-015).

❑ Systematically check for the 0 value when computing price. This will partly prevent
assets from being stolen due to arithmetic rounding (TOB-BL-008 , TOB-BL-009 ,
TOB-BL-011).

❑ Favor exact amount-in functions over exact amount-out. This will partly mitigate the
effects of arithmetic rounding (TOB-BL-008 , TOB-BL-009).

© 2020 Trail of Bits Balancer Core Assessment | 12

❑ Review all the documentation related to:

● How pool limits are handled. This will make sure users are aware of how limits are
handled and enforced (TOB-BL-014 , TOB-BL-015).

© 2020 Trail of Bits Balancer Core Assessment | 13

Findings Summary
Title Type Severity

1 Single-asset liquidity functions allow
stealing of assets

Access Controls High

2 Lack of events in setBLabs is error-prone Auditing and
Logging

Informational

3 Parameters’ order of single-asset
functions is confusing

Patching Informational

4 Assets will be lost in case of token
migration

Undefined
Behavior

Medium

5 Users can silently burn tokens with
transfers to 0x0

Data Validation Low

6 Privileged addresses can be transferred
without confirmation even to invalid
values

Data Validation Low

7 Users can join and exit pools even where
there are no tokens

Data Validation Medium

8 Single-asset exit functions allow
withdrawing of a negligible amount of
assets for free

Data Validation Undetermined

9 Assets with low decimals or low liquidity
lead to withdraw a negligible amount of
assets for free

Data Validation Medium

10 Rounding issues in joinPool/exitPool allow
for a negligible amount of free pool
tokens

Data Validation Undetermined

11 Attackers with large funds can steal the
pool's assets

Data Validation High

12 The normalized sum of the weight is not
always equal to 1

Undefined
Behavior

Informational

© 2020 Trail of Bits Balancer Core Assessment | 14

13 Pools with a large total supply cause
SWAP functions to always revert

Undefined
Behavior

Low

14 Token balance limits are declared but not
enforced

Undefined
Behavior

Informational

15 The swap-in and swap-out ratios are not
correctly enforced

Undefined
Behavior

Low

© 2020 Trail of Bits Balancer Core Assessment | 15

1. Single-asset liquidity functions allow stealing of assets
Severity: High Difficulty: Low
Type: Access Controls Finding ID: TOB-BL-001
Target: BPool.sol

Description
Incorrect access control in the single-asset liquidity functions allows an attacker to
withdraw all the assets.

The Balancer whitepaper states that:

Controlled pools are configurable by a “controller” address. Only this
address can add or remove liquidity to the pool (call join or exit).

However, this requirement is not enforced by the single-asset deposit and withdrawal
functions:

● joinswapExternAmountIn
● joinswapExternAmountOut
● exitswapPoolAmountIn
● exitswapPoolAmountOut

These functions are callable by anyone as soon as the pool is public, even if it is not
finalized. This creates several issues:

1. Anyone can steal the funds .
If exitswapExternAmountOut is called on a non-finalized pool, _totalSupply is 0 , and
poolAmountIn will always be 0 :

 function exitswapExternAmountOut (address tokenOut , uint tokenAmountOut , uint
maxPoolAmountIn)
 external
 logs
 lock
 returns (uint poolAmountIn)
 {

 require (_records[tokenOut].bound, "ERR_NOT_BOUND");
 require (_publicSwap, "ERR_SWAP_NOT_PUBLIC");

 Record storage outRecord = _records[tokenOut];

 poolAmountIn = calcPoolInGivenSingleOut (
 outRecord.balance,
 outRecord.denorm,

© 2020 Trail of Bits Balancer Core Assessment | 16

https://balancer.finance/whitepaper.html#controlled-vs-finalized-pools

 _totalSupply,
 _totalWeight,
 tokenAmountOut,
 _swapFee
);

Figure 1.1: BPool.sol#L652-L671 .

As a result, anyone can call exitswapExternAmountOut to withdraw all the assets for free.

2. Liquidity providers will lose their deposits.
Similar to exitswapExternAmountOut , poolAmountOut will always be 0 in
joinswapExternAmountIn . As a result, the liquidity providers will never have pool shares
and will lose their deposits.

3. Weight can be changed after external deposits
Because the pool is not finalized, the controller can change the asset's weight by calling
rebind , even after receiving liquidity from external contributors.

Exploit Scenario
Bob creates a pool worth $1,000,000. Bob makes the pool public, but not finalized. Eve
steals all the money.

Recommendation
Short term, prevent the single-asset deposit/withdraw functions from being called if the
pool is not finalized:

● joinswapExternAmountIn
● joinswapExternAmountOut
● exitswapPoolAmountIn
● exitswapPoolAmountOut

Long term, create a state machine representation of the pool, describing each state and
each function that should be callable by the different actors.

© 2020 Trail of Bits Balancer Core Assessment | 17

2. Lack of events in setBLabs is error-prone
Severity: Informational Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-BL-002
Target: BFactory.sol

Description
BFactory.setBLabs changes the blabs address without emitting an event:

 function setBLabs (address b) external {
 require (msg . sender == _blabs, "ERR_NOT_BLABS");
 _blabs = b;
 }

Figure 2.1: BFactory.sol#L51-L54 .

The lack of events makes it more difficult to track potential errors or a compromise.

Recommendation
Short term, add an event to BFactory.setBLabs.

Long term, monitor the contract’s events to detect a potential compromise.

© 2020 Trail of Bits Balancer Core Assessment | 18

3. Parameters’ order of single-asset functions is confusing
Severity: Informational Difficulty: Low
Type: Patching Finding ID: TOB-BL-003
Target: BPool.sol

Description
The parameters’ order of several similar functions is not the same:

● joinswapExternAmountIn(address tokenIn, uint tokenAmountIn, uint

minPoolAmountOut)

● joinswapPoolAmountOut(uint poolAmountOut, address tokenIn, uint

maxAmountIn)

● exitswapPoolAmountIn(uint poolAmountIn, address tokenOut, uint

minAmountOut)

● exitswapExternAmountOut(address tokenOut, uint tokenAmountOut, uint

maxPoolAmountIn)

For example, the address of the token is sometimes the first argument, and sometimes the
second one. This inconsistency might create confusion for the users.

Recommendation
Short term, follow the same order of parameters for similar functions.

Long term, consider using Slither's printer capacity to review the contract's API.

© 2020 Trail of Bits Balancer Core Assessment | 19

4. Assets will be lost in case of token migration
Severity: Medium Difficulty: High
Type: Undefined Behavior Finding ID: TOB-BL-004
Target: BPool.sol

Description
Once the pool is finalized, no token can be added or removed. If a token is migrated to a
new address, the pool will not follow this migration.

In this situation, the pool's value will not stay stable, and all the liquidators are likely to
withdraw their deposits as soon as possible, causing the slowest liquidators to lose their
deposits.

Exploit Scenario
Alice creates a pool with several tokens, including DAI. Bob deposits 1,000 DAI into the
pool. The MakerDAO team decides to migrate to a new version of the token contract to add
support for a new feature. Bob wishes to withdraw some of his DAI held in the pool but is
unable to as the contract has no functionality to interact with the new DAI contract.

Recommendation
Short term, properly document this limitation.

Long term, Balancer should study which solutions can be implemented, and properly
document what happens in the case of migration. Consider that adding a mechanism to
handle token migration will significantly increase code complexity, and potentially erode
trust in the system. If no on-chain mechanism is present to follow a token's migration, the
documentation should highlight off-chain strategies. For example, if the pool's value is
significant, it might be possible to contact the token's owner to ask for a migration to a new
pool (if all the assets can be migrated).

© 2020 Trail of Bits Balancer Core Assessment | 20

5. Users can silently burn tokens with transfers to 0x0
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-BL-005
Target: BToken.sol

Description
The amount of minted tokens is tracked in the BToken contract by the totalSupply
function. Burning tokens is only possible using an internal operation (called by BPools).
However, the transfer and transferFrom methods do not restrict the address destination
of address(0x0) , effectively allowing tokens to be burned without decreasing the
totalSupply variable.

Exploit Scenario
Alice creates a pool and uses some off-chain code to manage it. A calculation results in a
transfer to the null or empty address of 0x0 . As a result, Alice loses her tokens.

Recommendation
Add a require condition in transfer and transferFrom that explicitly forbids burning
tokens by transferring them to 0x0 .

Long term, use Echidna and Manticore to check that the BToken does not easily allow users
to burn tokens by transferring them to 0x0 .

© 2020 Trail of Bits Balancer Core Assessment | 21

6. Privileged addresses can be transferred without confirmation even to
invalid values
Severity: Low Difficulty: Medium
Type: Data Validation Finding ID: TOB-BL-006
Target: BPool.sol, BFactory.sol

Description
An incorrect use of the functions to set privileged addresses in contracts can irreversibly
set them to invalid addresses, such as 0x0 .

The owner or controller of the contracts can change privileged addresses using functions
such as setController and setBLabs :

 function setController (address manager)
 external
 logs
 lock
 {
 require (msg . sender == _controller, "ERR_NOT_CONTROLLER");
 _controller = manager;
 }

Figure 6.1: BPool.sol#L205-L212 .

 function setBLabs (address b)

 external

 {

 require (msg . sender == _blabs,

"ERR_NOT_BLABS");

 emit LOG_BLABS (msg . sender , b);

 _blabs = b;

 }

Figure 6.2: BFactory.sol#L63-L69 .

However, these functions do not check for invalid values (e.g., 0x0), and they work in a
single transaction.

Exploit Scenario

© 2020 Trail of Bits Balancer Core Assessment | 22

Alice creates a pool. She uses some off-chain code to manage it. However, a software issue
in her code calls the setController function with an uninitialized value (0x0). The BPool
code accepts this new value and locks up Alice's pool. As a result, she will need to create a
new pool.

Recommendation
Short term, split this important functionality into several functions. For instance, to change
the current controller, implement setController and acceptController, which will reject
any null address. Additionally, add a renounceController function that allows you to set
the controller to 0x0 if needed.

Long term, use Echidna and Manticore to verify that the administrative addresses cannot
be set to incorrect values.

© 2020 Trail of Bits Balancer Core Assessment | 23

7. Users can join and exit pools even where there are no tokens
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-BL-007
Target: BPool.sol

Description
Incorrect access control in the joinPool and exitPool functions allow calls to them to
succeed even when there are no binded tokens, producing unexpected results.

One one hand, if a user calls joinPool when _tokens.length is 0 , the pool will produce
share tokens for free:

 function joinPool (uint poolAmountOut , uint [] calldata maxAmountsIn)
 external
 logs
 lock
 {
 require (_finalized, "ERR_NOT_FINALIZED");

 uint poolTotal = totalSupply ();
 uint ratio = bdiv (poolAmountOut, poolTotal);
 require (ratio != 0 , "ERR_MATH_APPROX");

 for (uint i = 0 ; i < _tokens. length ; i ++) {
 address t = _tokens[i];
 uint bal = _records[t].balance;
 uint tokenAmountIn = bmul (ratio, bal);
 require (tokenAmountIn <= maxAmountsIn[i], "ERR_LIMIT_IN");
 _records[t].balance = badd (_records[t].balance, tokenAmountIn);
 emit LOG_JOIN (msg . sender , t, tokenAmountIn);
 _pullUnderlying (t, msg . sender , tokenAmountIn);
 }
 _mintPoolShare (poolAmountOut);
 _pushPoolShare (msg . sender , poolAmountOut);
 }

Figure 7.1: BPool.sol#L368-L390 .

On the other hand, if a user calls exitPool when _tokens.length is 0 , the pool will burn
shares, without giving anything in exchange:

 function exitPool (uint poolAmountIn , uint [] calldata minAmountsOut)
 external
 logs
 lock
 {

© 2020 Trail of Bits Balancer Core Assessment | 24

 require (_finalized, "ERR_NOT_FINALIZED");

 uint poolTotal = totalSupply ();
 uint exitFee = bmul (poolAmountIn, EXIT_FEE);
 uint pAiAfterExitFee = bsub (poolAmountIn, exitFee);
 uint ratio = bdiv (pAiAfterExitFee, poolTotal);
 require (ratio != 0 , "ERR_MATH_APPROX");

 _pullPoolShare (msg . sender , poolAmountIn);
 _pushPoolShare (_factory, exitFee);
 _burnPoolShare (pAiAfterExitFee);

 for (uint i = 0 ; i < _tokens. length ; i ++) {
 address t = _tokens[i];
 uint bal = _records[t].balance;
 uint tokenAmountOut = bmul (ratio, bal);
 require (tokenAmountOut >= minAmountsOut[i], "ERR_LIMIT_OUT");
 _records[t].balance = bsub (_records[t].balance, tokenAmountOut);
 emit LOG_EXIT (msg . sender , t, tokenAmountOut);
 _pushUnderlying (t, msg . sender , tokenAmountOut);
 }

 }

Figure 7.2: BPool.sol#L392-L419 .

Exploit Scenario
Bob creates a pool and finalizes it without adding any tokens. Then Eve calls joinPool and
obtains shares for free. Later, she tries to sell her shares to an investor who incorrectly
assumes that every pool will have at least one token.

Recommendation
Short term, prevent pool finalization if there are fewer than two tokens.

Long term, use Echidna and Manticore to test that joinPool and exitPool work as
expected.

© 2020 Trail of Bits Balancer Core Assessment | 25

8. Single-asset exit functions allow withdrawing of a negligible amount of
assets for free
Severity: Undetermined Difficulty: Low
Type: Data Validation Finding ID: TOB-BL-008
Target: BPool.sol

Description
A rounding issue caused by Solidity's integer arithmetic in exitswapExternAmountOut
allows users to withdraw assets without burning pool tokens.

The exitswapExternAmountOut function computes the amount of pool tokens to be
burned with calcPoolInGivenSingleOut :

 function exitswapExternAmountOut (address tokenOut , uint tokenAmountOut , uint
maxPoolAmountIn)
 external
 logs
 lock
 returns (uint poolAmountIn)
 {

 require (_records[tokenOut].bound, "ERR_NOT_BOUND");
 require (_publicSwap, "ERR_SWAP_NOT_PUBLIC");

 Record storage outRecord = _records[tokenOut];

 poolAmountIn = calcPoolInGivenSingleOut (
 outRecord.balance,
 outRecord.denorm,
 _totalSupply,
 _totalWeight,
 tokenAmountOut,
 _swapFee
);

Figure 8.1: BPool.sol#L652-L671 .

Due to rounding approximation, calcPoolInGivenSingleOut can return 0 while
tokenAmountOut is greater than 0 . As a result, an attacker can withdraw assets without
having pool tokens. We’ve provided Echidna and Manticore scripts that show how to trigger
the issue.

Exploit Scenario
Bob has a pool with two assets. The first asset has a balance of 9223372036854775808.
There are 9223372036854775808 pool tokens. Eve is able to withdraw 4 wei of the asset for

© 2020 Trail of Bits Balancer Core Assessment | 26

free. It is worth noting that the amount of tokens that Eve is allowed to obtain for free in a
single transaction is bounded by the token precision, which is at least 1/(10**18) .

Recommendation
Short term, revert in exitswapExternAmountOut if poolAmountIn is 0 .

Long term, consider:

● Checking for the 0 value when transferring values if appropriate.
● Favoring exact amount-in functions over exact amount-out.
● Using Echidna and Manticore to test the rounding effects.

© 2020 Trail of Bits Balancer Core Assessment | 27

9. Assets with low decimals or low liquidity lead to withdraw a negligible
amount of assets for free
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-BL-009
Target: BPool.sol

Description
A rounding issue caused by Solidity's integer arithmetic in joinPool allows users to receive
free tokens if one of the assets has a low decimal or low liquidity.

The amount of assets to be paid in joinPool is:

tokenAmountIn = token.balanceOf(this) * (poolAmountOut / poolTotal)

 function joinPool (uint poolAmountOut , uint [] calldata maxAmountsIn)
 external
 logs
 lock
 {
 require (_finalized, "ERR_NOT_FINALIZED");

 uint poolTotal = totalSupply ();
 uint ratio = bdiv (poolAmountOut, poolTotal);
 require (ratio != 0 , "ERR_MATH_APPROX");

 for (uint i = 0 ; i < _tokens. length ; i ++) {
 address t = _tokens[i];
 uint bal = _records[t].balance;
 uint tokenAmountIn = bmul (ratio, bal);

Figure 9.1: BPool.sol#L368-L382 .

The multiplication is done through the fixed-point arithmetic bmul :

c = ((a * b) + BONE / 2) / BONE

 function bmul (uint a , uint b)
 internal pure
 returns (uint)
 {
 uint c0 = a * b;
 require (a == 0 || c0 / a == b, "ERR_MUL_OVERFLOW");
 uint c1 = c0 + (BONE / 2);
 require (c1 >= c0, "ERR_MUL_OVERFLOW");
 uint c2 = c1 / BONE;

© 2020 Trail of Bits Balancer Core Assessment | 28

 return c2;
 }

Figure 9.2: BNum.sol#L63-L73 .

If ((a * b) + BONE / 2) is below BONE (10**18) , the result of the multiplication will be 0 .

As a result, if token.balanceOf(this) * (poolAmountOut / poolTotal) + < 5 *
10**17 , poolAmountOut, free share tokens will be generated. This will happen if the token
has a decimal below 18, or low liquidity.

Some high-value targets have a low decimal. For example, TUSD , which is the first token in
terms of market cap (according to etherscan), has a decimal of 6. A similar issue is present
in exitPool , which can lead a user to burn pool share tokens without receiving any assets
back.

Exploit Scenario
Bob creates a pool with the TUSD token. Eve uses the rounding issue to obtain free pool
share tokens, and reduce the amount in the pool. It is worth noting that the amount of
tokens that Eve is allowed to obtain for free in a single transaction is bounded by the token
precision, which is at least 1/(10**18) .

Recommendation
Short term, revert in joinPool if tokenAmountIn is zero and tokenAmountOut in exitPool.
Consider preventing tokens with a decimal != 18 to be bound.

Long term, consider:

● Checking for the 0 value when transferring values, if appropriate.
● Favoring exact amount-in functions over exact amount-out.
● Using Echidna and Manticore to test the rounding effects.

© 2020 Trail of Bits Balancer Core Assessment | 29

https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7

10. Rounding issues in joinPool/exitPool allow for a negligible amount of
free pool tokens
Severity: Undetermined Difficulty: Medium
Type: Data Validation Finding ID: TOB-BL-010
Target: BPool.sol

Description
Due to rounding issues caused by Solidity's integer arithmetic when depositing and
withdrawing an asset, it is possible for an attacker to generate free pool tokens.

When a user asks for poolAmountOut pool tokens through joinPool, they have to pay
asset.balanceOf(this) * (poolAmountOut / poolTotal) tokens.

 function joinPool (uint poolAmountOut , uint [] calldata maxAmountsIn)
 external
 logs
 lock
 {
 require (_finalized, "ERR_NOT_FINALIZED");

 uint poolTotal = totalSupply ();
 uint ratio = bdiv (poolAmountOut, poolTotal);
 require (ratio != 0 , "ERR_MATH_APPROX");

 for (uint i = 0 ; i < _tokens. length ; i ++) {
 address t = _tokens[i];
 uint bal = _records[t].balance;
 uint tokenAmountIn = bmul (ratio, bal);

Figure 10.1: BPool.sol#L368-L382 .

When a user exits a pool, they pay poolAmountIn pool tokens, and they receive
asset.balanceOf(this) * (poolAmountIn / poolTotal) .

 function exitPool (uint poolAmountIn , uint [] calldata minAmountsOut)
 external
 logs
 lock
 {
 require (_finalized, "ERR_NOT_FINALIZED");

 uint poolTotal = totalSupply ();
 uint exitFee = bmul (poolAmountIn, EXIT_FEE);

© 2020 Trail of Bits Balancer Core Assessment | 30

 uint pAiAfterExitFee = bsub (poolAmountIn, exitFee);
 uint ratio = bdiv (pAiAfterExitFee, poolTotal);
 require (ratio != 0 , "ERR_MATH_APPROX");

 _pullPoolShare (msg . sender , poolAmountIn);
 _pushPoolShare (_factory, exitFee);
 _burnPoolShare (pAiAfterExitFee);

 for (uint i = 0 ; i < _tokens. length ; i ++) {
 address t = _tokens[i];
 uint bal = _records[t].balance;
 uint tokenAmountOut = bmul (ratio, bal);

Figure 10.2: BPool.sol#L392-L412 .

Due to the rounding of these operations, an attacker can find an amount of poolAmountOut
that will be greater than poolAmountIn while allowing the same amount of asset tokens to
be transferred. As a result, an attacker can generate free pool tokens by consecutively
calling joinPool and exitPool .

Exploit Scenario
To exploit this issue, the attacker requires:

● EXIT_FEE is equal 0
● Initial_balance: 4294983682
● Initial pool supply: 2305843009213693953

Then, they need to:

1. call joinPool to generate 268435457 pool tokens, and pay 1 wei of the asset
2. call exitPool to burn 268434456 pool tokens, and pay 1 wei of the asset

Finally, the attacker receives all the assets, and 1,001 free pool tokens. It is worth noting
that the amount of tokens that the attacker is allowed to obtain for free in a single
transaction is bounded by the token precision, which is at least 1/(10**18) .

Recommendation
Fixing this issue requires some code changes. Trail of Bits is still investigating mitigations.
One solution could be to compute the dust in joinPool , and revert if it is above a
threshold.

Long term, consider using Echidna and Manticore to test the rounding effects.

© 2020 Trail of Bits Balancer Core Assessment | 31

11. Attacker with large funds can steal the pool's assets
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-BL-011
Target: BPool.sol

Description
A pool with an empty asset balance allows anyone to generate unlimited free share tokens.
Such a pool can be emptied by an attacker.

joinswapPoolAmountOut is one of the functions to deposit a single asset:

 function joinswapPoolAmountOut (uint poolAmountOut , address tokenIn , uint
maxAmountIn)
 external
 logs
 lock
 returns (uint tokenAmountIn)
 {
 require (_records[tokenIn].bound, "ERR_NOT_BOUND");
 require (_publicSwap, "ERR_SWAP_NOT_PUBLIC");

 Record storage inRecord = _records[tokenIn];

 tokenAmountIn = calcSingleInGivenPoolOut (
 inRecord.balance,
 inRecord.denorm,
 _totalSupply,
 _totalWeight,
 poolAmountOut,
 _swapFee
);

 require (tokenAmountIn <= maxAmountIn, "ERR_LIMIT_IN");

 inRecord.balance = badd (inRecord.balance, tokenAmountIn);

Figure 11.1: BPool.sol#L582-L604 .

If inRecord.balance is 0 , calcSingleInGivenPoolOut will return 0 :

/**

 // calcSingleInGivenPoolOut
//
 // tAi = tokenAmountIn //(pS + pAo)\ / 1 \\
//

© 2020 Trail of Bits Balancer Core Assessment | 32

 // pS = poolSupply || --------- | ̂ | --------- || * bI - bI
//
 // pAo = poolAmountOut \\ pS / \(wI / tW)//
//
 // bI = balanceIn tAi = --
//
 // wI = weightIn / wI \
//
 // tW = totalWeight | 1 - ---- | * sF
//
 // sF = swapFee \ tW /
//

***********/
 function calcSingleInGivenPoolOut (
 uint tokenBalanceIn ,
 uint tokenWeightIn ,
 uint poolSupply ,
 uint totalWeight ,
 uint poolAmountOut ,
 uint swapFee
)
 public pure
 returns (uint tokenAmountIn)
 {
 uint normalizedWeight = bdiv (tokenWeightIn, totalWeight);
 uint newPoolSupply = badd (poolSupply, poolAmountOut);
 uint poolRatio = bdiv (newPoolSupply, poolSupply);

 //uint newBalTi = poolRatio^(1/weightTi) * balTi;
 uint boo = bdiv (BONE, normalizedWeight);
 uint tokenInRatio = bpow (poolRatio, boo);
 uint newTokenBalanceIn = bmul (tokenInRatio, tokenBalanceIn);
 uint tokenAmountInAfterFee = bsub (newTokenBalanceIn, tokenBalanceIn);
 // Do reverse order of fees charged in joinswap_ExternAmountIn, this way
 // ̀`` pAo == joinswap_ExternAmountIn(Ti, joinswap_PoolAmountOut(pAo,
Ti)) ̀``
 //uint tAi = tAiAfterFee / (1 - (1-weightTi) * swapFee) ;
 uint zar = bmul (bsub (BONE, normalizedWeight), swapFee);
 tokenAmountIn = bdiv (tokenAmountInAfterFee, bsub (BONE, zar));
 return tokenAmountIn;
 }

Figure 11.2: BMath.sol#L147-L183 .

As a result, depositing assets in a pool with an empty balance generates free pool tokens.
An attacker with enough funds can empty any pool of assets. Pools with low liquidity or
assets with low decimals are more likely to be vulnerable.

Exploit Scenario

© 2020 Trail of Bits Balancer Core Assessment | 33

Bob has a pool with $10,000 of TUSD (6 decimals) and $10,000 of DAI (18 decimals). Eve has
$10,000,000. Eve buys all the TUSD from the pool, generates free pool tokens, and empties
both assets from the pool. Altogether, Eve steals $20,000.

Recommendation
Short term, revert in joinswapPoolAmountOut if calcSingleInGivenPoolOut is zero.

Long term, check for the 0 value when transferring values, if appropriate. Use Echidna and
Manticore to test the rounding effects.

© 2020 Trail of Bits Balancer Core Assessment | 34

12. The normalized sum of the weight is not always equal to 1
Severity: Informational Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-BL-012
Target: BPool.sol

Description
The normalized sum of the token weight may not always be equal to 1. The Balancer
whitepaper states that the sum of normalized token weights should be equal to 1.
However, inherent rounding issues in the division performed by the getNormalizedWeight
function can accumulate in the sum and result in a value less than 1.

Exploit Scenario
Alice creates a new pool. She reviews the documentation and incorrectly assumes that the
sum of a normalized weight token will be 1. As a result, she incorrectly implements
on-chain/off-chain code to interact with the pool, potentially causing unexpected results
(e.g., rounding issues, zero division) in her code.

Recommendation
Short term, properly document this rounding issue and make sure users understand that
this property is not strictly enforced.

Long term, consider using Echidna and Manticore to ensure normalized weights are
correctly computed.

© 2020 Trail of Bits Balancer Core Assessment | 35

13. Pools with a large total supply cause SWAP functions to always revert
Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-BL-013
Target: BPool.sol

Description
A revert that occurs during the computations performed of SWAP functions can stop users
from calling these functions, if the initial supply of tokens is large.

When a pool is finalized, the initial supply of shares is created. There is a lower bound to
the initial supply, but no upper bound:

 function finalize (uint initSupply)
 external
 logs
 lock
 {
 require (msg . sender == _controller, "ERR_NOT_CONTROLLER");
 require (! _finalized, "ERR_IS_FINALIZED");
 require (initSupply >= MIN_POOL_SUPPLY, "ERR_MIN_POOL_SUPPLY");

 _finalized = true ;
 _publicSwap = true ;

 _mintPoolShare (initSupply);
 _pushPoolShare (msg . sender , initSupply);
 }

Figure 13.1: BPool.sol#L224-L238 .

The total supply is used in several places, i.e., in the joinswapExternAmountIn function,
which calls calcPoolOutGivenSingleIn :

uint newPoolSupply = bmul (poolRatio, poolSupply);

Figure 13.2: BMath.sol#L142 .

The multiplication is done through the fixed-point arithmetic bmul :

 function bmul (uint a , uint b)
 internal pure
 returns (uint)
 {
 uint c0 = a * b;
 require (a == 0 || c0 / a == b, "ERR_MUL_OVERFLOW");

© 2020 Trail of Bits Balancer Core Assessment | 36

 uint c1 = c0 + (BONE / 2);
 require (c1 >= c0, "ERR_MUL_OVERFLOW");
 uint c2 = c1 / BONE;
 return c2;
 }

Figure 13.3: BNum.sol#L63-L73 .

An overflow in this computation will revert, regardless of the input values used in the SWAP
functions.

Exploit Scenario
Bob creates a pool with a very large number of token shares. Alice tries to call a SWAP
function, but it only reverts, regardless of the input values she uses. As a result, she is
unable to use the pool as expected.

Recommendation
Short term, document this behavior and make sure the users are aware of it.

Long term, consider using Echidna and Manticore to detect this kind of issues in the
codebase.

© 2020 Trail of Bits Balancer Core Assessment | 37

14. Token balance limits are declared but not enforced
Severity: Informational Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-BL-014
Target: BPool documentation

Description
Although the documentation states that there are maximum and minimum values for
token balances, there is no code to enforce such limits.

The documentation states:

Minimum Balance - (10^18) / (10^12)

The minimum balance of any token in a pool is 10^6 wei. Important note: this

is agnostic to token decimals and may cause issues for tokens with less than

6 decimals.

Maximum Balance - (10^18) * (10^12)

The maximum balance of any token in a pool is 10^12 ether.

However, it is still possible to have a token balance larger than the maximum or smaller
than the minimum, using joinPool and exitPool, respectively.

Exploit Scenario
Alice creates a new pool. She reviews the documentation and incorrectly assumes that the
token balances are bounded and the limits are correctly enforced. As a result, she
incorrectly implements on-chain/off-chain code to interact with the pool, potentially
causing unexpected results (e.g., rounding issues, zero division) in her code.

Recommendation
Short term, properly document the maximum and minimum values for token balances to
make sure users understand that these are not enforced. It is worth mentioning that
enforcing the limits in the contract could open the door for new denial-of-service attacks.

Long term, review all the documentation regarding pool limits. Consider using Echidna and
Manticore to test that pool limits are always enforced.

© 2020 Trail of Bits Balancer Core Assessment | 38

https://docs.balancer.finance/-LtRAKuhb1ZIm1X-H-IS/protocol/limitations

15. The swap-in and swap-out ratios are not correctly enforced
Severity: Low Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-BL-015
Target: BPool.sol

Description
The limits on the ratios to swap in and swap out tokens are not always correctly enforced.
The Balancer documentation defines maximum ratios when performing swap-in and
swap-out operations:

Maximum Swap In Ratio - 1/2

A maximum swap in ratio of 0.50 means an user can only swap in less than 50%

of the current balance of tokenIn for a given pool

Maximum Swap Out Ratio - 1/3

A maximum swap out ratio of 1/3 means an user can only swap out less than

33.33% of the current balance of tokenOut for a given pool

To define these limits, there are two constants in the BConst contract:

 uint public constant MAX_IN_RATIO = BONE / 2 ;
 uint public constant MAX_OUT_RATIO = (BONE / 3) + 1 wei ;

Figure 15.1: BConst.sol#L39-L40 .

These limits are supposed to be enforced in swapExactAmountIn and swapExactAmountOut :

require (tokenAmountIn <= bmul (inRecord.balance, MAX_IN_RATIO), "ERR_MAX_IN_RATIO");

Figure 15.2: BPool.sol#L442& .

require (tokenAmountOut <= bmul (outRecord.balance, MAX_OUT_RATIO),
"ERR_MAX_OUT_RATIO");

Figure 15.3: BPool.sol#L504 .

However, it still seems to be possible to swap over the limits, since the checks are
performed directly using the token balance. These values are taken directly from the token
supplies and the constants are made using BONE , so the result is not as precise as expected.

Exploit Scenario
Bob creates a new pool, and several users join. They review the documentation and note
the swap limits. However, Eve is able to swap tokens over the limits. The users observe the

© 2020 Trail of Bits Balancer Core Assessment | 39

large swaps from Eve so they decide to exit the pool since they believe their funds are no
longer secure.

Recommendation
Short term, simplify the implementation of the ratio checks in the swap-in and swap-out
operations using bdiv .

Long term, review all the documentation regarding pool limits. Consider using Echidna and
Manticore to test that pool limits are always enforced.

© 2020 Trail of Bits Balancer Core Assessment | 40

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal

© 2020 Trail of Bits Balancer Core Assessment | 41

implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits Balancer Core Assessment | 42

B. Fix Log
Balancer Labs addressed issues TOB-BL-001 to TOB-BL-015 in their codebase as a result of
the assessment. Each of the fixes was verified by Trail of Bits. The reviewed code is
available in git revision e232d03eea1c66529f22d3157c7f560bf0782370 .

ID Title Severity Status

01 Single-asset liquidity functions allow stealing of assets High Fixed

02 Lack of events in setBLabs is error-prone Informational Fixed

03 Parameters’ order of single-asset functions is confusing Informational Fixed

04 Assets will be lost in case of token migration Medium Mitigated

05 Users can silently burn tokens with transfers to 0x0 Low Won't fix

06 Privileged addresses can be transferred without
confirmation even to invalid values Low Won't fix

07 Users can join and exit pools even where there are no
tokens Medium Fixed

08 Single-asset exit functions allow withdrawing of a
negligible amount of assets for free Undetermined Mitigated

09 Assets with low decimals or low liquidity lead to
withdraw a negligible amount of assets for free Medium Mitigated

10 Rounding issues in joinPool/exitPool allow for a
negligible amount of free pool tokens Undetermined Mitigated

11 Attacker with large funds can steal the pool's assets High Fixed

12 The normalized sum of the weight is not always equal
to 1 Informational Fixed

13 Pools with a large total supply cause SWAP functions to
always revert Low Mitigated

14 Token balance limits are declared but not enforced Informational Fixed

15 The swap-in and swap-out ratios are not correctly
enforced Informational Won't fix

© 2020 Trail of Bits Balancer Core Assessment | 43

Detailed Fix Log
This section includes brief descriptions of fixes implemented by Balancer after the end of
this assessment that were reviewed by Trail of Bits.

Finding 1: Single-asset liquidity functions allow stealing of assets
This appears to be resolved forcing the pool to be finalized before calling the affected
functions.

Finding 2: Lack of events in setBLabs is error-prone
This appears to be resolved by adding an event in setBLabs .

Finding 3: Parameters’ order of single-asset functions is confusing
This appears to be resolved by reordering the parameters of the affected functions.

Finding 4: Assets will be lost in case of token migration
This appears to be partly resolved by adding a warning about token migration in the
documentation. However, we recommend studying different strategies, as well as their
costs and limitations to expand the documentation.

Finding 5: Users can silently burn tokens with transfers to 0x0
The Balancer Labs team indicated that they will not fix the issue because they say no
restrictions to 0x0 addresses will be added to the core protocol.

Finding 6: Privileged addresses can be transferred without confirmation even to
invalid values
The Balancer Labs team indicated that they will not fix the issue, saying that setBLabs will
not be used in the bronze release since the EXIT_FEE is 0 and the additional UX complexity
does not outweigh the benefits of splitting setController .

Finding 7: Users can join and exit pools even where there are no tokens
This appears to be resolved by forcing pool finalization to have two or more tokens binded.

Finding 8: Single-asset exit functions allow withdrawing of a negligible amount of
assets for free
This appears to be mitigated by adding a check that prevents division errors from reaching
zero, and fixing the initial pool share to 100. While it is still technically possible to take
advantage of rounding errors increasing the pool shares, it incurs an extremely high cost
for the attacker. The Balancer Labs team has committed to monitor pools individually and
warn users if a potential attack could happen.

© 2020 Trail of Bits Balancer Core Assessment | 44

Finding 9: Assets with low decimals or low liquidity lead to withdraw a negligible
amount of assets for free
This appears to be mitigated by adding a check that prevents division errors from reaching
zero, and fixing the initial pool share to 100. While it is still technically possible to take
advantage of rounding errors increasing the pool shares, it incurs an extremely high cost
for the attacker. The Balancer Labs team has committed to monitor pools individually and
warn users if a potential attack could happen.

Finding 10: Rounding issues in joinPool/exitPool allow for a negligible amount of free
pool tokens
This appears to be mitigated by fixing the initial pool share to 100. While it is still technically
possible to take advantage of rounding errors increasing the pool shares, it incurs an
extremely high cost for the attacker. The Balancer Labs team has committed to monitor
pools individually and warn users if a potential attack could happen.

Finding 11: Attacker with large funds can steal the pool's assets
This appears to be fixed adding a check to avoid division errors to reach zero by and using
minimum and maximum ratios on swap functions.

Finding 12: The normalized sum of the weight is not always equal to 1
This appears to be resolved by properly documenting this behavior.

Finding 13: Pools with a large total supply cause SWAP functions to always revert
This appears to be mitigated by fixing the initial pool share to 100. While it is still technically
possible to take advantage of rounding errors increasing the pool shares, it incurs an
extremely high cost for the attacker, requiring to increase the current balance several
orders of magnitude. The Balancer Labs team has committed to monitor pools individually
and warn users if a potential attack could happen.

Finding 14: Token balance limits are declared but not enforced
This appears to be resolved by removing the maximum balance limit and clarifying how the
minimum balance limit is enforced in the documentation.

Finding 15: The swap-in and swap-out ratios are not correctly enforced
The Balancer Labs team indicated that they will not fix the issue, indicating that the current
implementation already works as expected, considering the limitations in the integer
arithmetic imposed by Solidity.

© 2020 Trail of Bits Balancer Core Assessment | 45

